PDIL 2.0

Introduction

The PDIL is a library designed to make it easy (and possible) for desktop
developers to write applications to exchange data with Newton devices using the
built-in Dock application. The initial implementation will not allow a developer
to easily write a full-featured backup and restore program like NBU. The
requirements for such a program are complex and the ROM protocol is somewhat
fragile.

The ideal usage of the PDIL will be for applications that want to provide built in
synchronization to their products without writing the currently required Newton
application. Custom apps, such as those that may be written by VAR's can use the
PDIL to exchange data between desktop applications or databases and Newton
applications.

Design Assumptions

The PDIL 2.0 will be based on the FDIL 2.0.

The PDIL will know nothing about CDIL. The developer must implement all
communications functions including listen, accept, read, write and disconnect.
The developer provides a read and write data procptr which is used by the PDIL
for getting and sending all data.

The PDIL assumes nothing about the underlying communications implementation.
The read/write procs must be synchronous - operation is completed on return.
However, the read/write procs may internally do anything including blocking the
current thread, calling WaitNextEvent, or calling a status proc. All details are up
to the developer.

All operands and results will be FDIL entities. The developer is responsible for
disposing all results and operands using the FDIL API. Developers must use the
FDIL API to access the details of results and operands.

All PDIL calls have the ability to return communication errors. A preliminary
list is in PDIL.h (prefaced by the comment string "PDIL last result error
numbers'"), but the format of these errors and how the are returned and the
values are most likely going to change before the final release.

Very preliminary documentation 1 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Basic Flow Using PDIL
Because PDIL talks to the Dock application in the Newton OS, you need to follow a
certain set of steps in using PDIL. The basic flow is as follows:

< Get the store information for the Newton device by using
PD_GetAllStores or PD_GetCurrentStore.

= Set the current store you wish to work with by using
PD_SetCurrentStore.

< Get the soup information by using PD__GetAllSoups or
PD_GetCurrentSoup.

= Set the current soup you wish to work with by using
PD_SetCurrentSoup

< At this point you can now use the entry functions or the query

functions to manipulate soup entries.

The most likely result if this order isn't followed is a kPD_ProtocolError, or
errors like kPD_BadCurrentSoup or kPD_StoreNotFound or kPD_SoupNotFound.
(These are currently defined in PDIL.h)

If you have other issues with the appropriate order, the best place to turn at this
point is the dil-talk mailing list. Go here:

http://www.newton.apple.com/dev/newdevs.html#help

for more information on how to subscribe to this list. The entire DIL development
team is actively on the list, helping developers like yourselves.

Why PDIL?

Before getting into all the features of the PDIL, here's a short example showing
the ways in which it might be used.

(Example to be supplied later)

Very preliminary documentation 2 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Library Reference

Data Types
t ypedef voi d* PD Handl e;
All sessions created and managed by the PDIL are referenced via the PD_Handle
type. When sessions are created and returned to the user, the creating function
returns a PD_Handle. Most PDIL functions take a PD_Handle as their first
parameter.

typedef long DI L_Error;
A signed long used to return error codes generated by the PDIL.

typedef |ong PD_Stat us;
A signed long used to return status about the current PDIL session.

typedef |ong PD_Extension;
A signed long used to identify a loaded protocol extension. This typically expressed
as a 4-character identifier, and Newton, Inc. reserves the set of all lower-case
identifiers. Since protocol extensions are only loaded and active for the duration
of a particular communication session, developers do not need to worry about id
conflicts outside the scope of their application.

typedef voi d* PD_Cursor;
All cursors created and managed by the PDIL are referenced via the PD_Cursor
type. When cursors are created and returned to the user, the creating function
returns a PD_Cursor. Most PDIL cursor functions take a PD_Cursor as their
first parameter.

Error Codes

kPD Notlnitialized (kPD_ErrorBase - 1)
kPD I nval i dSessi on (kPD_ErrorBase - 2)
kPD I nval i dStore (kPD_ErrorBase - 3)
kPD_I nval i dSoup (kPD_ErrorBase - 4)
kPD_I| nval i dCur sor (kPD_ErrorBase - 5)
kPD I nval i dResul t (kPD_ErrorBase - 6)

kPD_I nval i dROWer si on (kPD_ErrorBase - 7)

Status codes

kPD_Ckay
kPD_Aut oDock
kPD_Cancel
kPD_Di sconnect
kPD Hel I o

A WNPEFLO

Very preliminary documentation 3 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Callbacks

typedef DIL_Error (*DIL_ReadProc)(void* buffer,
| ong* count,
voi d* userData);

Read the specified number of bytes into the buffer.

DI L_Error ReadBytes(void* buf, long ant, void* userData)

{
CD Handl e pi pe = (CD_Handl e) user Dat a;
DIL Error err = CD Read(pi pe, buf, ant);
return err;

}

typedef DIL_Error (*DIL_WiteProc)(const void* buffer,
| ong count,
voi d* userDat a) ;

Write the specified number of bytes from the buffer.

DIL_Error WiteBytes(const void* buf, long ant, void* userData)

{
CD _Handl e pi pe = (CD_Handl e) user Dat a;
DIL_Error err;
if (amt == -1)
err = CD_Fl ushQut put (pi pe);
el se
err = CD Wite(pipe, buf, am);
return err;
}

IMPORTANT NOTE: Your write procedure will be called with a count of -1
when it is time to flush the output buffer. You must check the count or else you'll
get an error from the CDIL.

typedef DIL_Error (*DIL_StatusProc)(long* bytesAvail abl e,
voi d* userDat a) ;

Return the number of bytes waiting to be read.

DIL_Error StatusBytes(long *bytesAvail abl e, voi d* userData)

{
CD _Handl e pi pe = (CD_Handl e) user Dat a;
DIL_Error err = CD BytesAvail abl e(pi pe, bytesAvail abl e);
return err;
}
Very preliminary documentation 4 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

Setting up and Shutting down the PDIL

The following calls are made to start and stop the PDIL. The startup call allocates
some common data structures and makes all the rest of the calls work and should
be called during program initialization. The shutdown call releases all allocated
memory and should be called prior to program termination.

DIL Error PD_Startup(void);

Initializes the PDIL. You must call this function before calling any other PDIL
function. It is generally called just once at the beginning of your application, but
can be called more than once as long as an equal number of calls to PD_Shutdown
are also made.

Example:
BOOL CMyApp: : I nitlnstance()
{

DIL_Error err = PD Startup();
}

Error codes:
kDI L_Qut O Menory

DIL_Error PD_Shutdown(voi d);

Closes the library. If this is the last call to PD_Shutdown, then all memory
allocated by the PDIL since PD_Startup was called is deallocated.

Example:

int CWApp: : Exitlnstance()
{

PD_Shut down() ;
return CW nApp: : Exitlnstance();
}

Error codes:
kPD NotlInitialized

Very preliminary documentation 5 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Session control

The next sequence of calls control a PDIL session. A session is simply defined as
the current connection to a Newton device. A session is associated with a
PD_Handle. The PDIL will support multiple, simultaneous sessions to different
Newton devices.

The session calls mimic their associated CDIL calls. Typically, PD_CreateSession
is called after a connection is accepted by the CDIL. PD_Idle must be called
periodically to process unexpected data coming from the Newton. Unexpected data
includes disconnects, cancels, and other commands. After the PDIL session is
complete, PD_Dispose is called to disconnect from the Newton.

DIL Error PD_CreateSession(
PD_Handl e* out Sessi on,
DI L_ReadProc i nReadProc,
DIL_StatusProc inStatusProc,
DIL_WiteProc inWiteProc,
void * i nUser Dat a) ;

Create a new session. This function should be called after a connection from the
Newton has been accepted. The function will connect to the Newton using the
defined 2.0 connection protocol, and will not return until it completes.
inReadProc and inWriteProc are developer supplied functions to read and write
data. The functions must not return until the specified number of bytes has been
read or written. Typically, these will be CDIL-based functions, but a developer
can choose to implement them differently.

inStatusProc is a developer supplied function that will be called by PD_Idle to
determine whether any bytes are waiting to be read from the Newton.

inUserData will be passed as a parameter to each of the callback procs.
Example:

Error codes:

kDI L_Qut O Menory if the session cannot be created
kDI L_I nval i dPar anet er if any of the callback procs

are not specified
kPD Notlnitialized if PD Startup has not been called
kPD_I nval i dROWer si on if connected to a 1.x device

DIL_Error PD_Dispose(PD_Handl e inSession);

Close the specified session by sending a disconnect command (if the Newton is
still connected). Upon return, inSession will no longer be valid.

Very preliminary documentation 6 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Example:

Error codes:
kPD_NotlInitialized
kDI L_I nval i dHandl e
?? commerrors ??

if PD_Startup has not been called
if inSession is not a real session
as a result of the disconnect call

PD_Status PD_Idl e(PD_Handl e i nSession);

Idle the specified session and return the status of the connection. This function
must be called periodically to give the PDIL's time to handle unexected data

arriving from the Newton.

This function need not be called if you are actively communicating with the
Newton. For example, if your Ul puts up a dialog waiting for user input, you
should call PD_Idle while the dialog is displayed. However, once the choice is
made and you are issuing commands and reading responses, PD_Idle need not be

called.

PD_Idle calls the statusProc supplied to PD_CreateSession.

Example:

Error codes:
kPD NotlInitialized
kDI L_I nval i dHandl e

Status codes:

kPD_Ckay 0
kPD_Aut oDock 1
kPD_Cancel 2
kPD_Di sconnect 3
kPD Hell o 4

Very preliminary documentation
Very subject to change

if PD Startup has not been called
if inSession is not a real session

everything is okay, nothing to do
an Aut oDock command has been

recei ved

the user pressed the Stop button

t he Newt on di sconnect ed

i nformati onal, shouldn't get these

Copyright© 1997 Newton, Inc.
All rights reserved

Information functions

This section describes a few useful utility functions. PD_GetNewtonName and
PD_GetNewtoninfo are fairly obvious. PD_GetNewtonError should be called when
any other PDIL function returns a kPD_ InvalidResult error code.
PD_SetStatusText controls the text shown in the spinning barber pole slip on the
Newton, but only works on 2.1 devices.

DIL _Error PD_Get NewtonError(PD_Handl e inSession);
Return the last result code sent by the Newton. This function should only be called
in response to a KPD__NewtonError error code. Calling at any other time will
return an unreliable result.

Example:

Error codes:

kPD NotlInitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
?? result errors ?? list of errors returned by kDResult

DIL_Error PD_Get Newtonlnfo(PD_Handle inSession,
SNewt onSysl| nf o* out Versi onl nfo);

Return information about the connected Newton device. The developer owns the
pointer returned in outVersioninfo and should call free() on it when finished.

The version information is an array of longs, containing the following:

newt onUni quel D
manuf acturer id
machi ne type
rom version
rom st age
ram si ze
screen hei ght
screen width
system update version
Newt on obj ect system version
signature of internal store
vertical screen resolution
hori zontal screen resol ution
screen depth
/1 the following information is only on 2.1 devices
syst enFl ags
seri al Nunmber [2]
t ar get Pr ot ocol

Very preliminary documentation 8 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar aret er if outVersionlnfo is null

DIL_Error PD_Get Newt onName(PD_Handl e inSession,
FD_Handl e* out Newt onName) ;

Return the owner name of the connected Newton device. The developer owns the
returned string, and should call FD_Dispose() on it when finished.

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar aret er i f out Newt onNane is null

DIL_Error PD_Set StatusText(PD_Handl e inSession,
const char* inText);

Sets the text of the message displayed in the "spinning barber pole" slip. Note
that this function only exists on 2.1 devices, but will fail silently on earlier
devices.

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar anet er if inText is not a string

Very preliminary documentation 9 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

Store functions

These functions control which store the rest of the PDIL commands operate on.
There are no PDIL calls that operate on union soups. If you have (or could have) a
soup which spans multiple stores, then you must iterate over all the stores
yourself. PD_GetAllStores returns an array of store frames that can be used to
perform this iteration.

The current store is used by subsequent soup and entry functions. You must call
PD_SetCurrentStore to set the store you want to operate on before making any
other calls. (See the Cursor section at the end for exceptions to this rule.)

PD_GetCurrentStore is primarily a convenience function in case you forgot
which store you set to be current, and will simply return a clone of the store
frame you passed in. Specifically, the Newton will not be asked for the current
store.

DIL_Error PD_GetAll Stores(PD_Handle inSession,

FD_Handl e* out Stores);

Return an array of store frames. A subset of each element of the array may be
used as a parameter to the PD_SetCurrentStore function.

Example:

Result:
Each array slot contains the following information about a store:

[{nanme: "Internal",
signature: 22315107,
Tot al Si ze: 3767328,
UsedSi ze: 1490936,
kind: "Internal",
info: {lastrestorefrontard: -487836541,

defaul t Store: TRUE},

readOnly: NL,
storepassword: NIL,
storeversion: 4},

{nane: "Card",
signature: -246638930,
Tot al Si ze: 969488,
UsedSi ze: 756068,
kind: "Storage card",
i nfo: {defaultStore: TRUE},
readOnly: NL,
storepassword: NIL,
defaul t Store: TRUE,
storeversion: 4}]

Very preliminary documentation 10 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Error codes:
kPD Notlnitialized
kDI L_I nval i dHandl e
kDI L_I nval i dPar anet er

if PD Startup has not been called
if inSession is not a real session
if outStores is null

i nSession,
out St ore);

DIL Error PD_Get DefaultStore(PD_Handl e

FD_Handl e*

Return a store frame describing the default store as set by the Newton user. This
frame contains the same information returned for _GetAllStores.

Example:

Result:

{ nane:
si gnature:
Tot al Si ze:
UsedSi ze:
kind: "Storage card"
i nfo: {defaultStore:
readOnly: NIL,
storepassword: NIL,
defaul t Store: TRUE,
storeversion: 4}

“Card",

969488,
756068,

Error codes:
kPD NotlInitialized
kDI L_I nval i dHandl e
kDI L_I nval i dPar aret er

DIL_Error

PD_Get Current St or e(PD_Handl e

- 246638930,

TRUE}

if PD Startup has not been called
if inSession is not a real session
if outStores is null

i nSession,

FD_Handl e* out Store);

Return the current store frame as last set by the application. This function is a
PDIL convenience function and the Newton device is not asked for the current
store. If PD_SetCurrentStore has not been called, this will return kFD__NIL.

Example:
Result:
{nane: "Internal",
kind: "Internal",
signature: 22315107,

info: {lastrestorefr

Very preliminary documentation
Very subject to change

oncard: -487836541}}

11 Copyright© 1997 Newton, Inc.

All rights reserved

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session

DIL Error PD_SetCurrentStore(PD_Handl e inSession,
FD Handl e inStore);

Set the current store. The current store is used by subsequent soup and entry
functions. You must call PD_SetCurrentStore to set the store you want to operate
on before making any other calls. If inStore is kFD_NIL, the current store will
be set to the default store as defined on the Newton, and a subsequent call to
PD_GetCurrentStore will get the default store frame.

Example:
inStore is a frame containing (at least) the following slots:

{name: "Internal",
kind: "Internal",
signature: O,
info: {soup info frame },

}
The info slot is optional. If it is included, then the soup info on the Newton will be
updated. Other slots (such as those returned in the _GetAllStores frame) will be

ignored for this command.

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
Very preliminary documentation 12 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

Soup functions

DIL _Error PD_CreateSoup(PD_Handl e inSession,
const char* inSoupName
FD _Handl e i nSoupl ndex) ;

Create the specified soup on the current store using inSoupindex as the array of
index frames. Note that even if you have only one index, it must be placed into an
array. If inSoupName already exists, this function is the same as
PD_SetCurrentSoup (and the soup index does NOT get changed!)

Example:
Show an example of creating a valid array of souplindex frames

Error codes:

kPD NotlInitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar amet er if inSouplndex is not an array (or nil)

or doesn't have the required slots ??
or inSoupName is O or > 39 characters

DIL_Error PD_Del eteSoup(PD_Handl e i nSessi on,
FD_Handl e i nSoupName) ;

Delete the specified soup on the current store. inSoup is the name of the soup to
delete.

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar amnet er if inSoup is not a string

DIL_Error PD_EmptySoup(PD_Handl e inSession,
FD_Handl e i nSoupName) ;

Remove all the entries from the specified soup on the current store. inSoup is the
name of the soup to empty.

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar anet er if inSoupNane is not a string

Very preliminary documentation 13 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

DIL _Error PD_GetAll Soups(PD_Handl e inSession,

FD_Handl e* out Soups);

Return an array of soup names and signatures from the current store. The array
is actually an array of arrays. FD_GetLength on the array will give you the
number of soups on the store, and FD_GetArraySlot will allow you to extract the
inner array which has the name and signature of the soup.

Result:
[["Cal endar", -241498083],

["Cal endar Notes", -242377639],
["Directory", -309224836],
["1InBox", -314656770],
["Library", -231384509],
[*Names", 213450357],
[" Newt Wor ks", 88726189],
["Notes", 384199549],
[" Qut Box", -257835846],

[" Packages", -100387713],

[" Repeat
[" Repeat

["Systent,

Meetings", -114179748],
Not es”, 135516493],

494944721] ,

[" Syst emAl ar mSoup”, 258019192],

["To do",

219290207] ,

["To Do List", 528579200]]

Example:
FD Handl e
FD Handl e
FD Handl e
| ong

soupli st ;
soupNane;
soupSi gnat ur e;
nSoups;

PD _Get Al | Soups(gSessi on, &soupli st);

/1 iterate through all the soups
for (int ii=0; ii < FD CGetlLength(soupList); ++i)
{
FD Handl e el enent = FD_Get ArraySl ot (souplList, ii);
soupNane = FD Get ArraySl ot (el enent, 0);
soupSi gnature = FD Get ArraySl ot (el enent, 1);
}
Error codes:
kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar anet er i f out SoupNanes or out SoupSi gnat ur es
is NULL

Very preliminary documentation
Very subject to change

14 Copyright© 1997 Newton, Inc.
All rights reserved

DIL _Error PD_GetCurrent Soup(PD_Handl e inSession,
FD_Handl e* out Soup);

Return the current soup as last set by the application. This function is a PDIL
convenience function and the Newton device is not asked for the current soup. If
PD_SetCurrentSoup has not been called, this will return KFD__NIL.

Example:
FD Handl e gCur r ent Soup;
PD Handl e gSessi on;

PD_Get Cur r ent Soup(gSessi on, &gCurrent Soup) ;

Result:
The name of the current soup.

Error codes:
kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session

DIL_Error PD_SetCurrent Soup(PD_Handl e i nSession,
FD_Handl e i nSoupName) ;

Set the soup on the current store for subsequent entry functions. inSoup is the
name of the soup to use. This function must be called before any of the entry
functions.

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar amnet er i f inSoupName is not a string

Very preliminary documentation 15 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

Entry functions

The following functions are used only after a current store and current soup have
successfully been set. See the section called "Basic Flow Using PDIL" at the
begining of this document on what routines to call when.

DIL_Error PD_AddEntry(PD_Handl e inSession,
FD_Handl e inEntry,
Il ong* out | D);
Add the specified entry, and return the new unique ID.

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar amnet er if inEntry is not a frane

if outlDis not a pointer

DIL_Error PD_ChangeEntry(PD_Handl e inSession,
FD_Handl e i nEntry);

Change the specified entry.
Example:

Error codes:

kPD NotlInitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar amet er if inEntry is not a frane

DIL_Error PD_Del eteEntri es(PD_Handl e inSessi on,
FD_Handl e entryl Ds) ;

Remove the entries specified by the array of entrylDs from the current soup.
Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar anet er if entrylDs is not an array

Very preliminary documentation 16 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

DIL Error PD_GetEntry(PD_Handl e inSession,
|l ong entryl D);

Get the entry with the specified uniquelD from the current soup.
Example:

Error codes:
kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session

DIL _Error PD_Get Soupl Ds(PD_Handl e inSession,
FD_Handl e* out Soupl Ds) ;

Return an array of entry ID's from the current soup. The resulting entryID can
then be used as a parameter to the _GetEntry or _DeleteEntries functions.

Example:
[0,
S,
6,
7]

Error codes:
kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar anet er i f outSouplDs is NULL

Very preliminary documentation 17 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

Cursor functions

These cursor functions are an alternative to the "Store, Soup, Entry" set of
functions, and are generally easier to use if all you want to do is read entries
from the Newton. It is very important to note that you cannot mix and match these
functions with the others. For example, you can not generate a query and then
make a PD_DeleteEntries or PD__AddEntry call. The PDIL does nothing to prevent
that, but the ROM will generate errors if the wrong calls are made (typically a
kDBadCurrentSoup error)

DIL_Error PD_Query(PD_Handle inSession,

FD_Handl e i nSoupName,
FD_Handl e i nQuer ySpec,
PD_Cursor* cursor);

Perform a query on the specified soup on the current store.

soup string t he nane of the soup

query kFD_NIL to sinmply iterate through using
t he default index

franme a query spec

Details to be provided

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar anet er if inSoupNane is not a string

if inSoupQuery is not a frane

DIL_Error PD_CountEntries(PD_Cursor inCursor,
|l ong* out Count) ;

Return the number of entries in the specified cursor.
Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar anet er if outCount is not a pointer

Very preliminary documentation 18 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

DIL _Error PD_DisposeCursor(PD _Handl e inSession,
PD_Cursor cursor);

Dispose of the specified cursor.
Example:

Error codes:
kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor

DIL Error PD_Entry(PD_Cursor inCursor,
FD_Handl e* out Entry);

Return the current entry from the specified cursor.
Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar anet er if outEntry is not a pointer

DIL _Error PD_GotoKey(PD Cursor inCursor,
FD_Handl e i nKey,
FD_Handl e* outEntry);

The entry at the specified key location is returned. Nil is returned if there is no
entry with the specified key.

Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar anet er if outEntry is not a pointer

if inKey is not a string or an integer

DIL Error PD_Move(PD_Cursor inCursor,
| ong i nOf f set,
FD _Handl e*out Entry);

Move the specified cursor the number of entries specified by offset from the
current position, and return the resulting entry. Offset can be positive or

Very preliminary documentation 19 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

negative.
Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar anet er if outEntry is not a pointer

DIL_Error PD_Next(PD_Cursor inCursor,
FD Handl e* out Entry);

Advance the cursor to the next entry and return the entry.
Example:

Error codes:

kPD NotlInitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar anet er if outEntry is not a pointer

DIL_Error PD_Prev(PD_Cursor inCursor,
FD Handl e* out Entry);

Backup the cursor to the previous entry and return the entry.
Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar amnet er if outEntry is not a pointer

DIL_Error PD_Reset(PD_Cursor inCursor,
FD_Handl e* outEntry);

Position the cursor to the beginning and return the first entry.
Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar amnet er if outEntry is not a pointer

Very preliminary documentation 20 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

DIL _Error PD_Reset ToEnd(PD_Cursor inCursor,
FD _Handl e* out Entry);

Position the cursor to the end and return the last entry.
Example:

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inCursor is not a real cursor
kDI L_I nval i dPar anet er if outEntry is not a pointer

Very preliminary documentation 21 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

Package Loading

DIL _Error PD_LoadPackage(PD_Handl e i nSessi on,
|l ong | enPackage,
l ong chunksSi ze,
DI L_ReadProc readProc,
voi d* userDat a);

Load a package that is lenPackage bytes long. The readProc is called to read
chunkSize bytes of data at a time (until the last call which may be less). If the
readProc returns an error (either a disk error or the user cancels) the package
load is terminated and the connection is broken. The userData parameter is passed
to the readProc, and is typically the platform representation of the package file.

Note: We recommend a chunkSize of 1k (1024 bytes) to allow for
responsiveness on the desktop side,.

Error codes:
kPD NotlInitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session

A simple example of package loading:

voi d | oadPackage(char* fil enane, PD Handl e session)

{
FI LE* package;
f pos_t filesize;
if ((package = fopen(filenane, "r")) == NULL)
return;

/* get the size of the package file */
f seek(package, 0, SEEK END);
f get pos(package, &filesize);
f seek(package, 0, SEEK SET);

PD LoadPackage(session, filesize,
kLoadPackageDef aul t ChunkSi ze,
ReadPackage, package));

fcl ose(package);

}
DI L_Error ReadPackage(voi d* buf, |long ant, void* userData)
{
fread(buf, 1, anmt, (FILE*)userData);
return kDI L_NoError;
}
Very preliminary documentation 22 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

A relatively complex example of a callback for package loading:

struct Cal |l backDat a

{
CFil e* fFile;
DWORD fFileSize;
DWORD f Ant Read;
CDi al og* fDi al og;
1
DIL_Error Downl oadCal | back(voi d* buffer, |ong* ant Read,
voi d* user Dat a)
{

Cal | backDat a* data = (Cal | backDat a*) user Dat a;

*am Read = data->fFil e->Read(buffer, *antRead);
/1l Actually, CFile::Read will throw an exception on error; we
/1 should catch and handle it, possibly returning the result
/1 of GetLastError as this function's result, or perhaps
/1 CFil eException::mcause or CFil eException:: ml GsError.

dat a- >f Ant Read += *ant Read;
CProgressCtrl* bar = (CProgressCirl*)

dat a- >f Di al og->Get Dl gl t em(| DC_PROGRESS BAR) ;
bar - >Set Pos(dat a- >f Ant Read / 1024);

// Could al so check for a click on Cancel here.
return (*ant Read == 0);

}
DIL_Error DoDownl oad(PD_Handl e sessi on, CFil e& pkg,
CDi al og& progress)
{
DWORD packageSi ze = pkg. Get Lengt h() ;
Cal | backDat a dat a;
data.fFile = &pkg;
data.fFileSize = pkg. Get Lengt h();
dat a. f Ant Read = 0;
dat a. f Di al og = &progress;
CProgressCtrl* bar = (CProgressCirl*)
progress. Get Dl gl t en{ | DC_PROGRESS BAR);
bar - >Set Range(0, data.fFileSize / 1024);
return PD _Downl oadPackage(sessi on,
data.fFil eSize,
kLoadPackageDef aul t ChunkSi ze,
Downl oadCal | back,
&dat a) ;
}
Very preliminary documentation 23 Copyright© 1997 Newton, Inc.

Very subject to change All rights reserved

Protocol Extensions

Protocol extensions can be used to add functionality beyond that provided by the
PDIL. The extension is a Newton Script closure that must be compiled on the
desktop by NTK. Typically, an NTK project is set up to create a stream file, and
the contents of the resulting stream file must be read by the application and
passed to this function.

The protocol extension can be called and the result will be returned by
PD_ CallExtension.

If necessary, the extension can be removed by PD_RemoveExtension, although all
protocol extensions are automatically removed when the connection terminates.

DIL _Error PD_LoadExtensi on(PD_Handl e i nSessi on,
| ong i nExt ensi onl D,
FD_Handl e inExtension);

Load a protocol extension from inExtension and assign it the specified
inExtensioniD.

Note: Protocol extension id's are usually represented by 4 characters. Newton,
Inc. reserves all lower-case identifiers.

Error codes:

kPD Notlnitialized if PD Startup has not been called
kDI L_I nval i dHandl e if inSession is not a real session
kDI L_I nval i dPar anet er if inExtension is not a frane

if outExtensionlD is not a pointer

DIL Error PD_Call Extensi on(PD_Handl e i nSessi on,
| ong i nExt ensi onl D,
FD _Handl e inParans
FD _Handl e* out Results);

Call the specified protocol extension, passing params as a parameter array, and
receiving results from the extension.

Note: The protocol extension MUST return a result and can be either a simple
integer or a NewtonScript object.

Example: This very simple protocol extension simply beeps the specified number
of times. This source can be pasted into a .f file and used by NTK to create a
stream file. The extension calls :ReadCommandData() to read the passed in value
(which in this case is a simple integer) and calls :WriteCommand() to return the
result of O (which is the simplest return value and usually indicates the
command completed successfully)

Very preliminary documentation 24 Copyright© 1997 Newton, Inc.
Very subject to change All rights reserved

out put
begi n

.= func(ep)
|l ocal nTines :=
for

ep: ReadCommandDat a() ;
1 to nTines do

Get Root () : SysBeep();

ep: WiteConmand(" BEEP", O,

return nil;
end;

true);

This is the method for calling the extension from the PDIL to make the Newton

device beep 3 times:

FD Handl e result;
err =

Error codes:

kPD Notlnitialized i f
kDI L_I nval i dHandl e i f
kDI L_I nval i dPar anet er i f
or
if
DIL_Error

PD Cal | Ext ensi on(gSessi on,

PD_RemoveExt ensi on(PD_Handl e

' BEEP'
FD _Makel nt (3),
&result);

PD Startup has not been called
i nSession is not a real session
inParans is not a frane

kFD NI L

out Results is NULL

i nSessi on,

| ong extensionlD);

Remove the specified protocol extension. All protocol extensions are
automatically removed when the Newton Dock application terminates.

Example:

Error codes:

kPD Notlnitialized i f
kDI L_I nval i dHandl e i f
Very preliminary documentation 25

Very subject to change

PD Startup has not been called
inSession is not a real session

Copyright© 1997 Newton, Inc.
All rights reserved

